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Neural Networks



Linear classifiers: Perceptron

• Decision trees
• Inductive bias: use a combination of small number of features

• Nearest neighbor classifier (= estimate the label as majority votes of k-
NNs of input in the training data in the feature space)
• Inductive bias: all features are equally good

• Logistic Regression, and Perceptron
• Inductive bias: use all features, but some more than others 
• learning weights for features 
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A neuron
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Perceptron

• Input are feature values

• Each feature has a weight

• Sum in the activation

• If the activation is:

• > b, output class 1

• otherwise, output class 2 
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Example: spam
• Imagine 3 features (spam is “positive” class):

• Free (number of occurrences of “free”) 

• Money (number of occurrences of “money”) 

• BIAS (intercept, always has value 1) 
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Geometry of the perceptron 
• In the space of feature vectors

• Examples are points (in D dimensions)

• A weight vector is a hyperplane (a D-1 dimensional object) 

• One side corresponds to y=+1

• Other side corresponds to y=-1 

• Perceptrons are also called as linear classifiers 
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Learning a perceptron 
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Properties of perceptrons

• Convergence: if the training data is 
separable then the perceptron training will 
eventually converge [block 62, novikoff 62]
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Maximum margin

• Assuming that the data is linearly separable, we define margin 
as 
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Proof of convergence
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Proof of convergence (cont.)
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Limitations of perceptrons

• Convergence: if the data isn’t separable, the training 
algorithm may not terminate.

•Overtraining: test/validation accuracy rises and then falls.
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Multi-Layered Perceptron : Motivation
• One of the main weakness of linear models is that they are linear.

• Decision trees and k-NN classifiers can model non-linear boundaries.

• Multi-layer neural networks are yet another non-linear classifier.

• Take the biological inspiration further by chaining together perceptrons.

• Allows us to use what we learned about linear models:

• Loss functions, regularization, optimization
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Two-layer network architecture 
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The XOR function 

• Note that a perceptron cannot learn the XOR function:

• Exercise: come up with the parameters of a two layer network with two 
hidden units that computes the XOR function. 

• Here is a table with a bias feature for XOR 
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EXPRESSIVE POWER OF A TWO-LAYER NETWORK 

• Colloquially “a two-layer network can approximate any function”.

• Going from one to two layers dramatically improves the representation 
power of the network.
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How many hidden units? 
• d dimensional data with k hidden units has (d+2) k + 1 parameters.

• (d+1)k in the first layer (1 for the bias) and k+1 in the second layer 

• With n training examples, set the number of hidden units k ~ n/d to keep the number of 
parameters comparable to size of training data. 

• k is both a form of regularization and inductive bias 

• Training and test error vs. k 
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Training a two-layer network 

• Optimization framework:

• Loss minimization: replace squared-loss with any other.

• Regularization:

• Traditionally NN are not regularized (early stopping instead) 

• But you can add a regularization (e.g. L2-norm of the weights)

• Optimization by gradient descent

• Highly non-convex problem so no guarantees about optimality. 19



Training a two-layer network (cont.)

• Optimization framework:

• Or equivalently 

• Computing gradients: second layer 

20



Training a two-layer network (cont.)

• Computing gradients: first layer

• Chain rule of derivatives 
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Practical issues: gradient descent 
• Use online gradients (or stochastic gradients)

• Learning rate 𝜂: start with a high value and reduce it when the validation error stops 
decreasing.

• Momentum: move out small local minima 
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Practical issues: initialization

• Initialization didn’t matter for linear models

• Guaranteed convergence to global minima as long as step size is suitably chosen 
since the objective is convex 

• Neural networks are sensitive to initialization

• Many local minima 

• Symmetries: reorder the hidden units and change the weights accordingly to get 
another network that produces identical outputs 

• Train multiple networks with randomly initialized weights, and pick the one that yields 
best validation accuracy. 23



Beyond two layers 

• The architecture generalizes to any directed acyclic graph (DAG)

• For example a multi-layer network

• One can order the vertices in a DAG such that all edges go from left to 
right (topological sorting)

• Gradient can be computed recursively using the chain rule. 
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Breadth vs. Depth 

• Why train deeper networks?

• We will borrow ideas from theoretical computer science:

• A boolean circuit is a DAG where each node is either an input, an AND gate, 
an OR gate, or a NOT gate. One of these is designated as an output gate. 

• Circuit complexity of a boolean function f is the size of the smallest circuit (i.e., 
with the fewest nodes) that can compute f.

• The parity function: the number of 1s is even or odd 
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Breadth vs. Depth 

• Why not train deeper networks?

• Vanishing gradients 

• Gradients shrink as one moves away from the output layer 

• Convergence is slow 

• But:

• Training deep networks is an active area of research.

• Layer-wise initialization (perhaps using unsupervised data) 

• Engineering: GPUs to train on massive labelled datasets 26



Choices of link function

• Tanh

• Sigmoid

• Relu (rectified linear unit) (fewer vanishing gradient problems) 27



Other choices of the loss function

• Cross entropy (better for classification problems) 

• For binary classification (y = 0 or 1 and f is the network output, designed to be between 0 
and 1)

• 𝑙 𝑦!, 𝑓(𝑥!) = − 𝑦! log 𝑓 𝑥! + 1 − 𝑦! log 1 − 𝑓 𝑥!

• For multi-class problems:

• If there are M classes, we would make M output neurons in the last layer, each designed to be 
between 0 and 1. 

• 𝑙 𝑦!, 𝑓(𝑥!) = −∑"#$% 𝕝 𝑦! = 𝑐 log 𝑓"(𝑥!)
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How to make output neurons be between 0 and 1?  

• Use softmax:

• 𝑓! 𝑥" = #$%('(!)
∑"#$% #$%('(")

.

• If 𝛽 → ∞, this would be equivalent with the argmax function. 
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Image as input to a neural network

• Regular neural nets don’t scale well to full images.

• Requires 32*32*3 = 3072 weights just for a single neuron in the 2nd layer.

• For larger images, number of weights increases rapidly, leading to overfitting.
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Convolutional neural nets

• The layers of a convnet have neurons arranged in 3 dimensions: width, height, depth.

• Each neuron in the hidden layers is only connected to a few number of neurons in the previous 
layer. 
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Convolutional layer
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Layers used in convnets
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Layers used in convnets (cont.)
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Examples of learned filters

35



Pooling layer
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Fully connected layer

• Similar to layers in multilayer perceptrons.
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Layer patterns
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