
Artificial Intelligence
CE-417, Group 1

Computer Eng. Department
Sharif University of Technology

Fall 2023

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original
slides for the textbook, and CS-188 (UC. Berkeley).

1

2

Neural Networks

Linear classifiers: Perceptron

• Decision trees
• Inductive bias: use a combination of small number of features

• Nearest neighbor classifier (= estimate the label as majority votes of k-
NNs of input in the training data in the feature space)
• Inductive bias: all features are equally good

• Logistic Regression, and Perceptron
• Inductive bias: use all features, but some more than others
• learning weights for features

3

A neuron

4

Perceptron

• Input are feature values

• Each feature has a weight

• Sum in the activation

• If the activation is:

• > b, output class 1

• otherwise, output class 2

5

Example: spam
• Imagine 3 features (spam is “positive” class):

• Free (number of occurrences of “free”)

• Money (number of occurrences of “money”)

• BIAS (intercept, always has value 1)

6

Geometry of the perceptron
• In the space of feature vectors

• Examples are points (in D dimensions)

• A weight vector is a hyperplane (a D-1 dimensional object)

• One side corresponds to y=+1

• Other side corresponds to y=-1

• Perceptrons are also called as linear classifiers

7

Learning a perceptron

8

Properties of perceptrons

• Convergence: if the training data is
separable then the perceptron training will
eventually converge [block 62, novikoff 62]

9

Maximum margin

• Assuming that the data is linearly separable, we define margin
as

10

Proof of convergence

11

Assumption : !w = 1

Proof of convergence (cont.)

12

𝑦!w "#$ %x! < 0

Limitations of perceptrons

• Convergence: if the data isn’t separable, the training
algorithm may not terminate.

•Overtraining: test/validation accuracy rises and then falls.

13

Multi-Layered Perceptron : Motivation
• One of the main weakness of linear models is that they are linear.

• Decision trees and k-NN classifiers can model non-linear boundaries.

• Multi-layer neural networks are yet another non-linear classifier.

• Take the biological inspiration further by chaining together perceptrons.

• Allows us to use what we learned about linear models:

• Loss functions, regularization, optimization

14

Two-layer network architecture

15

The XOR function

• Note that a perceptron cannot learn the XOR function:

• Exercise: come up with the parameters of a two layer network with two
hidden units that computes the XOR function.

• Here is a table with a bias feature for XOR

16

EXPRESSIVE POWER OF A TWO-LAYER NETWORK

• Colloquially “a two-layer network can approximate any function”.

• Going from one to two layers dramatically improves the representation
power of the network.

17

How many hidden units?
• d dimensional data with k hidden units has (d+2) k + 1 parameters.

• (d+1)k in the first layer (1 for the bias) and k+1 in the second layer

• With n training examples, set the number of hidden units k ~ n/d to keep the number of
parameters comparable to size of training data.

• k is both a form of regularization and inductive bias

• Training and test error vs. k

18

Training a two-layer network

• Optimization framework:

• Loss minimization: replace squared-loss with any other.

• Regularization:

• Traditionally NN are not regularized (early stopping instead)

• But you can add a regularization (e.g. L2-norm of the weights)

• Optimization by gradient descent

• Highly non-convex problem so no guarantees about optimality. 19

Training a two-layer network (cont.)

• Optimization framework:

• Or equivalently

• Computing gradients: second layer

20

Training a two-layer network (cont.)

• Computing gradients: first layer

• Chain rule of derivatives

21

Practical issues: gradient descent
• Use online gradients (or stochastic gradients)

• Learning rate 𝜂: start with a high value and reduce it when the validation error stops
decreasing.

• Momentum: move out small local minima

22

Practical issues: initialization

• Initialization didn’t matter for linear models

• Guaranteed convergence to global minima as long as step size is suitably chosen
since the objective is convex

• Neural networks are sensitive to initialization

• Many local minima

• Symmetries: reorder the hidden units and change the weights accordingly to get
another network that produces identical outputs

• Train multiple networks with randomly initialized weights, and pick the one that yields
best validation accuracy. 23

Beyond two layers

• The architecture generalizes to any directed acyclic graph (DAG)

• For example a multi-layer network

• One can order the vertices in a DAG such that all edges go from left to
right (topological sorting)

• Gradient can be computed recursively using the chain rule.

24

Breadth vs. Depth

• Why train deeper networks?

• We will borrow ideas from theoretical computer science:

• A boolean circuit is a DAG where each node is either an input, an AND gate,
an OR gate, or a NOT gate. One of these is designated as an output gate.

• Circuit complexity of a boolean function f is the size of the smallest circuit (i.e.,
with the fewest nodes) that can compute f.

• The parity function: the number of 1s is even or odd

25

Breadth vs. Depth

• Why not train deeper networks?

• Vanishing gradients

• Gradients shrink as one moves away from the output layer

• Convergence is slow

• But:

• Training deep networks is an active area of research.

• Layer-wise initialization (perhaps using unsupervised data)

• Engineering: GPUs to train on massive labelled datasets 26

Choices of link function

• Tanh

• Sigmoid

• Relu (rectified linear unit) (fewer vanishing gradient problems) 27

Other choices of the loss function

• Cross entropy (better for classification problems)

• For binary classification (y = 0 or 1 and f is the network output, designed to be between 0
and 1)

• 𝑙 𝑦!, 𝑓(𝑥!) = − 𝑦! log 𝑓 𝑥! + 1 − 𝑦! log 1 − 𝑓 𝑥!

• For multi-class problems:

• If there are M classes, we would make M output neurons in the last layer, each designed to be
between 0 and 1.

• 𝑙 𝑦!, 𝑓(𝑥!) = −∑"#$% 𝕝 𝑦! = 𝑐 log 𝑓"(𝑥!)

28

How to make output neurons be between 0 and 1?

• Use softmax:

• 𝑓! 𝑥" = #$%('(!)
∑"#$% #$%('(")

.

• If 𝛽 → ∞, this would be equivalent with the argmax function.

29

Image as input to a neural network

• Regular neural nets don’t scale well to full images.

• Requires 32*32*3 = 3072 weights just for a single neuron in the 2nd layer.

• For larger images, number of weights increases rapidly, leading to overfitting.

30

Convolutional neural nets

• The layers of a convnet have neurons arranged in 3 dimensions: width, height, depth.

• Each neuron in the hidden layers is only connected to a few number of neurons in the previous
layer.

31

Convolutional layer

32

Layers used in convnets

33

Layers used in convnets (cont.)

34

Examples of learned filters

35

Pooling layer

36

Fully connected layer

• Similar to layers in multilayer perceptrons.

37

Layer patterns

38

