# Artificial Intelligence CE-417, Group 1 Computer Eng. Department Sharif University of Technology

Fall 2023

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original slides for the textbook, and CS-188 (UC. Berkeley).



## **Neural Networks**



#### Linear classifiers: Perceptron

- Decision trees
  - Inductive bias: use a combination of small number of features
- Nearest neighbor classifier (= estimate the label as majority votes of k-NNs of input in the training data in the feature space)
  - Inductive bias: all features are equally good
- Logistic Regression, and Perceptron
  - Inductive bias: use all features, but some more than others
    - learning weights for features

#### A neuron



4

## Perceptron

• Input are feature values

activation
$$(\mathbf{w}, \mathbf{x}) = \sum w_i x_i = \mathbf{w}^T \mathbf{x}$$

i

- Each feature has a weight
- Sum in the activation
- If the activation is:
  - > b, output class 1
  - otherwise, output class 2

 $\mathbf{x} \to (\mathbf{x}, 1)$  $\mathbf{w}^T \mathbf{x} + b \to (\mathbf{w}, b)^T (\mathbf{x}, 1)$ 



#### Example: spam

- Imagine 3 features (spam is "positive" class):
  - Free (number of occurrences of "free")
  - Money (number of occurrences of "money")
  - BIAS (intercept, always has value 1)



6

## Geometry of the perceptron

- In the space of feature vectors
  - Examples are points (in D dimensions)
  - A weight vector is a hyperplane (a D-1 dimensional object)
  - One side corresponds to y=+1
  - Other side corresponds to y=-1
- Perceptrons are also called as linear classifiers



7

#### Learning a perceptron

Input: training data  $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$ 

Perceptron training algorithm [Rosenblatt 57]

- ig\* Initialize  $\mathbf{w} \leftarrow [0, \dots, 0]$
- ♦ for iter = 1,...,T
  - ► for i = 1,...,n
    - predict according to the current model

$$\hat{y}_i = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x}_i > 0\\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_i \le 0 \end{cases}$$

• if 
$$y_i=\hat{y}_i$$
 , no change

• else, 
$$\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$$



## Properties of perceptrons

• **Convergence:** if the training data is separable then the perceptron training will eventually converge [block 62, novikoff 62]



#### Maximum margin

 Assuming that the data is linearly separable, we define margin as

$$\delta = \max_{\mathbf{w}} \min_{(\mathbf{x}_i, y_i)} \left[ y_i \mathbf{w}^T \mathbf{x}_i \right]$$
  
such that,  $||\mathbf{w}|| = 1$ 

Proof of convergence Assumption :  $\|\widehat{\mathbf{w}}\| = 1$ Let,  $\hat{\mathbf{w}}$  be the separating hyperplane with margin  $\delta$ getting closer  $\mathbf{\hat{w}}^T \mathbf{w}^{(k)} = \mathbf{\hat{w}}^T \left( \mathbf{w}^{(k-1)} + y_i \mathbf{x}_i \right)$ update rule  $= \mathbf{\hat{w}}^T \mathbf{w}^{(k-1)} + \mathbf{\hat{w}}^T y_i \mathbf{x}_i$ algebra  $\geq \mathbf{\hat{w}}^T \mathbf{w}^{(k-1)} + \delta$ definition of margin w is  $||\mathbf{w}^{(k)}|| > k\delta$  $> k\delta$ 

## Proof of convergence (cont.)

$$\begin{aligned} & ||\mathbf{w}^{(k)}||^2 = ||\mathbf{w}^{(k-1)} + y_i \mathbf{x}_i||^2 & \text{update rule} \\ & \leq ||\mathbf{w}^{(k-1)}||^2 + ||y_i \mathbf{x}_i||^2 & y_i \mathbf{w}^{(k-1)T} \mathbf{x}_i < 0 \\ & \leq ||\mathbf{w}^{(k-1)}||^2 + 1 & \text{norm} \\ & \leq k & ||\mathbf{w}^{(k)}|| \leq \sqrt{k} \end{aligned}$$

$$k\delta \le ||\mathbf{w}^{(k)}|| \le \sqrt{k} \longrightarrow k \le \frac{1}{\delta^2}$$

12

## Limitations of perceptrons

- **Convergence:** if the data isn't separable, the training algorithm may not terminate.
- Overtraining: test/validation accuracy rises and then falls.

#### Multi-Layered Perceptron : Motivation

- One of the main weakness of linear models is that they are linear.
- Decision trees and k-NN classifiers can model non-linear boundaries.
- Multi-layer neural networks are yet another non-linear classifier.
- Take the biological inspiration further by chaining together perceptrons.
- Allows us to use what we learned about linear models:
  - Loss functions, regularization, optimization



#### Two-layer network architecture



$$y = \mathbf{v}^T \mathbf{h}$$





Figure 10.2: picture of sign versus tanh <sup>1</sup> It's derivative is just  $1 - \tanh^2(x)$ .

## The XOR function

- Note that a perceptron cannot learn the XOR function:
- **Exercise:** come up with the parameters of a two layer network with two hidden units that computes the XOR function.
  - Here is a table with a bias feature for XOR







## EXPRESSIVE POWER OF A TWO-LAYER NETWORK

**Theorem 10** (Two-Layer Networks are Universal Function Approximators). Let *F* be a continuous function on a bounded subset of *D*dimensional space. Then there exists a two-layer neural network  $\hat{F}$  with a finite number of hidden units that approximate *F* arbitrarily well. Namely, for all x in the domain of *F*,  $|F(x) - \hat{F}(x)| < \epsilon$ .

- Colloquially "a two-layer network can approximate any function".
- Going from one to two layers dramatically improves the representation power of the network.

#### How many hidden units?

- d dimensional data with k hidden units has (d+2) + 1 parameters.
  - (d+1)k in the first layer (1 for the bias) and k+1 in the second layer
- With n training examples, set the number of hidden units  $k \sim n/d$  to keep the number of parameters comparable to size of training data.
- k is both a form of regularization and inductive bias
- Training and test error vs. k

test error training erros #hidden layers

#### Training a two-layer network

• Optimization framework:

$$\min_{W,v} \sum_{n} \frac{1}{2} \left( y_n - \sum_{i} \mathbf{v}_i f(\mathbf{w}_i^T \mathbf{x}_n) \right)^2$$

- Loss minimization: replace squared-loss with any other.
- Regularization:
  - Traditionally NN are not regularized (early stopping instead)
  - But you can add a regularization (e.g. L<sub>2</sub>-norm of the weights)
- Optimization by gradient descent
  - Highly non-convex problem so no guarantees about optimality.

#### Training a two-layer network (cont.)

• Optimization framework:

$$\min_{W,v} \sum_{n} \frac{1}{2} \left( y_n - \sum_{i} \mathbf{v}_i f(\mathbf{w}_i^T \mathbf{x}_n) \right)^2$$

• Or equivalently

$$\min_{W,v} \sum_{n} \frac{1}{2} \left( y_n - \mathbf{v}^T \mathbf{h}_n \right)^2$$

$$\mathbf{h}_{i,n} = f(\mathbf{w}_i^T \mathbf{x}_n)$$

• Computing gradients: second layer

$$\frac{dL_n}{d\mathbf{v}} = -\left(y_n - \mathbf{v}^T \mathbf{h}_n\right) \mathbf{h}_n$$

## Training a two-layer network (cont.)

$$\min_{W,v} \sum_{n} \frac{1}{2} \left( y_n - \sum_{i} \mathbf{v}_i f(\mathbf{w}_i^T \mathbf{x}_n) \right)^2$$

- Computing gradients: first layer
  - Chain rule of derivatives

$$\frac{dL_n}{d\mathbf{w}_i} = \sum_j \frac{dL_n}{d\mathbf{h}_j} \frac{d\mathbf{h}_j}{d\mathbf{w}_i} \longrightarrow \begin{bmatrix} \frac{dL_n}{d\mathbf{w}_i} \\ 0 \text{ if } i \neq j \end{bmatrix} \xrightarrow{dL_n} \frac{dL_n}{d\mathbf{w}_i} = -\left(y_n - v^T h_n\right) v_i f'(\mathbf{w}_i^T \mathbf{x}_n) \mathbf{x}_n$$
also called as back-propagation

#### Practical issues: gradient descent

• Use online gradients (or stochastic gradients)

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \frac{dL_n}{d\mathbf{w}} \qquad \qquad \frac{dL}{d\mathbf{w}} = \sum_n \frac{dL_n}{d\mathbf{w}}$$
  
batch online

- Learning rate  $\eta$ : start with a high value and reduce it when the validation error stops decreasing.
- Momentum: move out small local minima

Jsually set to a high value: 
$$\beta = 0.9$$
  

$$\Delta \mathbf{w}^{(t)} = \beta \Delta \mathbf{w}^{(t-1)} + (1-\beta) \left(-\eta \frac{dL_n}{d\mathbf{w}^{(t)}}\right)$$

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^t + \Delta \mathbf{w}^{(t)}$$

22

#### Practical issues: initialization

- Initialization didn't matter for linear models
  - Guaranteed convergence to global minima as long as step size is suitably chosen since the objective is convex
- Neural networks are sensitive to initialization
  - Many local minima
  - Symmetries: reorder the hidden units and change the weights accordingly to get another network that produces identical outputs
- Train multiple networks with randomly initialized weights, and pick the one that yields best validation accuracy.

## Beyond two layers

- The architecture generalizes to any directed acyclic graph (DAG)
  - For example a multi-layer network
  - One can order the vertices in a DAG such that all edges go from left to right (topological sorting)
  - Gradient can be computed recursively using the chain rule.



gradients: backward propagation

## Breadth vs. Depth

- Why train deeper networks?
- We will borrow ideas from theoretical computer science:
  - A boolean circuit is a DAG where each node is either an input, an AND gate, an OR gate, or a NOT gate. One of these is designated as an output gate.
  - Circuit complexity of a boolean function f is the size of the smallest circuit (i.e., with the fewest nodes) that can compute f.
- The parity function: the number of 1s is even or odd

$$\mathsf{parity}(\mathbf{x}) = \left(\sum_d x_d\right) \mod 2$$

**[Håstad, 1987]** A depth-*k* circuit requires  $\exp\left(n^{\frac{1}{k-1}}\right)$  to compute the parity function of *n* inputs

#### Breadth vs. Depth

- Why **not** train deeper networks?
- Vanishing gradients
  - Gradients shrink as one moves away from the output layer
  - Convergence is slow
- But:
- Training deep networks is an active area of research.
  - Layer-wise initialization (perhaps using unsupervised data)
  - Engineering: GPUs to train on massive labelled datasets

## Choices of link function



• Relu (rectified linear unit) (fewer vanishing gradient problems)



#### Other choices of the loss function

- Cross entropy (better for classification problems)
- For binary classification (y = 0 or 1 and f is the network output, designed to be between 0 and 1)
  - $l(y_n, f(x_n)) = -(y_n \log f(x_n) + (1 y_n) \log(1 f(x_n)))$
- For multi-class problems:
  - If there are M classes, we would make M output neurons in the last layer, each designed to be between 0 and 1.
  - $l(y_n, f(x_n)) = -\sum_{c=1}^M \mathbb{I}(y_n = c) \log f_c(x_n)$

#### How to make output neurons be between 0 and 1?

- Use softmax:
- $f_j(x_n) = \frac{\exp(\beta h_j)}{\sum_{c=1}^M \exp(\beta h_c)}$ .
- If  $\beta \to \infty$ , this would be equivalent with the argmax function.

#### Image as input to a neural network

- Regular neural nets don't scale well to full images.
- Requires  $32^*32^*3 = 3072$  weights just for a single neuron in the 2<sup>nd</sup> layer.
- For larger images, number of weights increases rapidly, leading to overfitting.



#### Convolutional neural nets

- The layers of a convnet have neurons arranged in 3 dimensions: width, height, depth.
- Each neuron in the hidden layers is only connected to a few number of neurons in the previous layer.



## **Convolutional layer**



## Layers used in convnets

- INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and with three color channels R,G,B.
- CONV layer will compute the output of neurons that are connected to local regions in the input, each computing a dot product between their weights and a small region they are connected to in the input volume. This may result in volume such as [32x32x12] if we decided to use 12 filters.
- RELU layer will apply an elementwise activation function, such as the max(0, x) thresholding at zero. This leaves the size of the volume unchanged ([32x32x12]).
- POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in volume such as [16x16x12].
- FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the numbers in the previous volume.

#### Layers used in convnets (cont.)



## Examples of learned filters



## Pooling layer



#### Fully connected layer

• Similar to layers in multilayer perceptrons.



#### Layer patterns

Layer Patterns

The most common form of a ConvNet architecture stacks a few CONV-RELU layers, follows them with POOL layers, and repeats this pattern until the image has been merged spatially to a small size. At some point, it is common to transition to fully-connected layers. The last fully-connected layer holds the output, such as the class scores. In other words, the most common ConvNet architecture follows the pattern:

INPUT -> [[CONV -> RELU]\*N -> POOL?]\*M -> [FC -> RELU]\*K -> FC